Detection of genomic regions associated with tiller number in Iranian bread wheat under different water regimes using genome-wide association study

1. FAO, Food and Agriculture Organization (2016) FAOSTAT database. https://faostat.fao.org/beta/en/. Accessed Aug 26 (2018). 2. Tavakol, E. et al. The barley Uniculme4 gene encodes a BLADE-ON-PETIOLE-like protein that controls tillering and leaf patterning. Plant Physiol. 168, 164–174 (2015). CAS  PubMed  PubMed Central  Google Scholar  3. Gao, L., Turner, M. K., […]

  • 1.

    FAO, Food and Agriculture Organization (2016) FAOSTAT database. https://faostat.fao.org/beta/en/. Accessed Aug 26 (2018).

  • 2.

    Tavakol, E. et al. The barley Uniculme4 gene encodes a BLADE-ON-PETIOLE-like protein that controls tillering and leaf patterning. Plant Physiol. 168, 164–174 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Gao, L., Turner, M. K., Chao, S., Kolmer, J. & Anderson, J. A. Genome-wide association study of seedling and adult plant leaf rust resistance in elite spring wheat breeding lines. PLoS ONE 11, 1–25 (2016).


    Google Scholar
     

  • 4.

    Chen, G. F., Wu, R. A. & Ili, D. M. Genome-wide association study for seedling emergence and tiller number using SNP markers in an elite winter wheat population. J. Genet. 96, 1–15 (2017).

    CAS 

    Google Scholar
     

  • 5.

    Spielmeyer, W. & Richards, R. A. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor. Appl. Genet. 109, 1303–1310 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Kuraparthy, V., Sood, S., Dhaliwal, H., Chhuneja, P. & Gill, B. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor. Appl. Genet. 114, 285–294 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Ren, T. et al. Utilization of a Wheat55K SNP Array for mapping of major QTL for temporal expression of the tiller number. Front Plant Sci. 9, 333 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Wang, R. et al. QTL identification and KASP marker development for productive tiller and fertile spikelet numbers in two high-yielding hard white spring wheat cultivars. Mol. Breed. 38, 135 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Gupta, P. K., Rustgi, S. & Kulwal, P. L. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol. 57, 461–485 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Goffinet, B. & Gerber, S. Quantitative trait loci: a meta-analysis. Genetics 155, 463–473 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Tyagi, S. et al. Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). Euphytica 201(3), 367–380 (2015).

    CAS 

    Google Scholar
     

  • 12.

    Khahani, B., Tavakol, E. & Shariati, V. Genome-wide meta-analysis on yield and yield-related QTLs in barley (Hordeum vulgare L.). Mol. Breed. 39, 56 (2019).


    Google Scholar
     

  • 13.

    Soriano, J. M. & Alvaro, F. Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci. Rep. 22(1), 10537 (2019).


    Google Scholar
     

  • 14.

    Venske, E. et al. Meta-analysis of the QTLome of Fusarium Head Blight resistance in bread wheat: refining the current puzzle. Front Plant Sci. 10, 727 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Khahani, B. et al. Genome wide screening and comparative genome analysis for Meta-QTLs, ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genomics 21(1), 294 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Darzi-Ramandi, H. et al. Detection of consensus genomic regions associated with root architecture of bread wheat on groups 2 and 3 chromosomes using QTL meta-analysis. Aust. J. Crop Sci. 11, 777–785 (2017).

    CAS 

    Google Scholar
     

  • 17.

    Liu, S., Hall, M. D., Griffey, C. A. & McKendry, A. L. Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci. 49, 1955–1968 (2009).

    CAS 

    Google Scholar
     

  • 18.

    Acuna-Galindo, M. A., Mason, R. E., Subramanian, N. K. & Hays, D. B. Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci. 55, 477–492 (2015).


    Google Scholar
     

  • 19.

    Soriano, J. M. & Royo, C. Dissecting the genetic architecture of leaf rust resistance in wheat by QTL meta-analysis. Phytopathology. 105(12), 1585–1593 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Hao, C. et al. Genetic diversity and construction of core collection in Chinese wheat genetic resources. Chin. Sci. Bull. 53, 1518–1526 (2008).

    CAS 

    Google Scholar
     

  • 21.

    Alipour, H. et al. Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. Front Plant Sci. 8, 1–14 (2017).


    Google Scholar
     

  • 22.

    Liu, X., Huang, M., Fan, B., Buckler, E. S. & Zhang, Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 12(2), e1005767 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Kaler, A. S., Gillman, J. D., Beissinger, T. & Purcell, L. C. Comparing different statistical models and multiple testing corrections for association mapping in soybean and maize. Front Plant Sci. 10, 1794 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Piepho, H., Mohring, J., Melchinger, A. & Buchse, A. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161, 209–228 (2008).


    Google Scholar
     

  • 25.

    Chardon, F. et al. Genetic architecture offlowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168(4), 2169–2185 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Sareen, S., Tyagi, B. S., Sarial, A. K., Tiwari, V. & Sharma, I. Trait analysis, diversity, and genotype x environment interaction in some wheat landraces evaluated under drought and heat stress conditions. Chil. J. Agric. Res. 74, 135–142 (2014).


    Google Scholar
     

  • 27.

    Mecha, B. et al. Correlation and path coefficient studies of yield and yield associated traits in bread wheat (Triticum aestivum L.) genotypes. Adv Plants Agric Res. 6(5), 128–136 (2017).


    Google Scholar
     

  • 28.

    Al Rabbi, H. Genetics of drought tolerance in hard red spring wheat in the northern United States of America. PhD. Thesis, North Dakota State University. Available from: https://pdfs.semanticscholar.org/a50c/b086f4dc159bd7adc1e9aa501309af59dfc0 (2017).

  • 29.

    Begum, M.C. QTL analysis of pre-harvest sprouting resistance in SHA3/CBRD x Naxos spring wheat population under different environmental conditions. Master. Thesis, Norwegian University. https://nmbu.brage.unit.no/nmbu-xmlui/handle/11250/2569580 (2018).

  • 30.

    Qaseem, M. F. et al. Genome wide association mapping in bread wheat subjected to independent and combined high temperature and drought stress. PLoS ONE 13(6), 1–22 (2018).


    Google Scholar
     

  • 31.

    Liu, J. et al. A genome-wide association study of wheat spike related traits in China. Front Plant Sci. 9(1584), 1–14 (2018).

    ADS 

    Google Scholar
     

  • 32.

    Arminian, A., Houshmand, S. & Shiran, B. Evaluation the relationships between grain yield and some of its related traits in a doubled-haploid bread wheat population. Electron. J. Crop Prod. 3, 21–38 (2010).


    Google Scholar
     

  • 33.

    Bilgrami, S. S. et al. Evaluation of agro-morphological traits related to grain yield of Iranian wheat genotypes in drought-stress and normal irrigation conditions. Aust. J. Crop Sci. 12(5), 738–748 (2018).


    Google Scholar
     

  • 34.

    Zarei Abbasabad, E., Mohammadi, S., Moghaddam, M. & Jalal Kamali, M. Analysis of genetic diversity, population structure and linkage disequilibrium in Iranian wheat landraces using SSR markers. Plant Gen. Res. 1, 1–8 (2016).


    Google Scholar
     

  • 35.

    Berkman, P. J. et al. Dispersion and domestication shaped the genome of bread wheat. Plant Biol. Technol. J. 11, 564–571 (2013).

    CAS 

    Google Scholar
     

  • 36.

    Edae, E. A. et al. Association mapping and nucleotide sequence variation in five drought tolerance candidate genes in spring wheat. Plant Gen. 6, 1–13 (2014).


    Google Scholar
     

  • 37.

    Wang, S. et al. Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotech J. 12, 787–796 (2014).

    CAS 

    Google Scholar
     

  • 38.

    Cavanagh, C., Morell, M., Mackay, I. & Powell, W. From mutations to MAGIC: resources for gene discovery, validation, and delivery in crop plants. Curr. Opin. Plant Biol. 11, 215–221 (2008).

    PubMed 

    Google Scholar
     

  • 39.

    Allen, A. M. et al. Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotech J. 11, 279–295 (2013).

    CAS 

    Google Scholar
     

  • 40.

    Jia, J. et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91–95 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Varshney, R. K., Hoisington, D. A. & Tyagi, A. K. Advances in cereal genomics and applications in crop breeding. Trends Biotech. 24, 490–499 (2006).

    CAS 

    Google Scholar
     

  • 42.

    Wang, Z. et al. Identification and validation of novel low-tiller number QTL in common wheat. Theor. Appl. Genet. 129, 603–612 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Tavakol, E., Elbadry, H., Tondelli, A., Cattivelli, L. & Rossini, L. Genetic dissection of heading date and yield under Mediterranean dry climate in barley (Hordeum vulgare L.). Euphytica 212(2), 343–353 (2016).


    Google Scholar
     

  • 44.

    Guo, Z. et al. Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat. Sci. Rep. 8, 14435 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Mwadzingeni, L., Shimelis, H., Jasper, G., Rees, D. & Toi, J. Genome-wide association analysis of agronomic traits in wheat under drought stressed and non-stressed conditions. PLoS ONE 3, 1–13 (2017).


    Google Scholar
     

  • 46.

    Valluru, R., et al. Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. New Phytologist. 1–16 (2016).

  • 47.

    Jin, H. et al. Genome-wide QTL mapping for wheat processing quality parameters in a Gaocheng 8901/Zhoumai 16 recombinant inbred line population. Front. Plant Sci. 7, 1032 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Karlstedt, F. et al. Mapping of quantitative trait loci (QTL) for resistance against Zymoseptoria tritici in the winter spelt wheat accession HTRI1410 (Triticum aestivum subsp. spelta). Euphytica 215(6), 1–15 (2019).

    CAS 

    Google Scholar
     

  • 49.

    Amer, S. Genetic architecture of wheat yield responses to drought. PhD. Thesis, University of Reading. Available from: https://centaur.reading.ac.uk/89407/ (2019).

  • 50.

    Mohajeri Naraghi, S. et al. Deciphering the genetics of major end-use quality traits in wheat. G3 9, 1405–1427 (2019).


    Google Scholar
     

  • 51.

    Muqaddasi, Q. H. et al. Genetic mapping reveals large-effect QTL for anther extrusion in CIMMYT spring wheat. Agronomy. 9(407), 1–12 (2019).

    CAS 

    Google Scholar
     

  • 52.

    Zanke, C. D. et al. Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front. Plant Sci. 6, 644 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Sneller, C. H., Mather, D. E. & Crepieux, S. Analytical approaches and population types for finding and utilizing QTL in complex plant populations. Crop Sci. 49, 363–380 (2009).


    Google Scholar
     

  • 54.

    Kassambara, A. & Mundt, F. Extract and Visualize the Results of Multivariate Data Analyses. https://cran.r-project.org/web/packages/factoextra/factoextra.pdf (2020).

  • 55.

    Liu, K. & Muse, S. V. PowerMarker an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Kusmec, A. & Schnable, P. S. FarmCPUpp: efficient large-scale genomewide association studies. Plant Direct. 2, e00053 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Diaz-Garcia, L. et al. SOFIA: an R package for enhancing genetic visualization with Circos. J. Hered. 108(4), 443–448 (2017).

    CAS 

    Google Scholar
     

  • 59.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

  • 60.

    Maccaferri, M. et al. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 5, 449–465 (2015).

    PubMed 

    Google Scholar
     

  • 61.

    Guo, B. et al. QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL locations. Crop Sci. 46, 595–602 (2006).


    Google Scholar
     

  • 62.

    Veyrieras, J. B., Goffinet, B. & Charcosset, A. MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformat. 8, 49 (2007).


    Google Scholar
     

  • 63.

    Bennett, D. et al. Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor. Appl. Genet. 125, 255–271 (2012).

    PubMed 

    Google Scholar
     

  • 64.

    Devi, R. et al. QTL mapping for salt tolerance associated traits in wheat (Triticum aestivum L.). Euphytica 215, 210 (2019).

    CAS 

    Google Scholar
     

  • 65.

    Diaz De Leon, J. L. et al. Quantitative trait loci associated with salinitytolerance in field grown bread wheat. Euphytica 181, 371–383 (2011).


    Google Scholar
     

  • 66.

    Ehdaie, B., Mohammadi, S. A. & Nouraein, M. QTLs for root traits at mid-tillering and for root and shoot traits at maturity in a RIL population of spring bread wheat grown under well-watered conditions. Euphytica 211, 17–38 (2016).


    Google Scholar
     

  • 67.

    Gahlaut, V. et al. QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PLoS ONE 12, e0182857 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Genc, Y. et al. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor. Appl. Genet. 121, 877–894 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Griffiths, S. et al. Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm. PLoS ONE 10(3), e0118847 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Guan, P. et al. Global QTL Analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front Plant Sci. 9, 529 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Heidari, B. et al. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid populationof bread wheat. Genome 54, 517–527 (2011).

    PubMed 

    Google Scholar
     

  • 72.

    Hu, Y. S. et al. Molecular mapping and genetic analysis of a QTL controlling spike formation rate and tiller number in wheat. Gene 634, 15–21 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Huang, X. Q., Kempf, H., Ganal, M. W. & Roder, M. S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat. Theor. Appl. Genet. 109, 933–943 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Jia, H. et al. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor. Appl. Genet. 126, 2123–2139 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Kumar, N. et al. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol. Breed. 19, 163–177 (2007).


    Google Scholar
     

  • 76.

    Li, Z. et al. Mapping of QTL for tiller number at different stages of growth in wheat using double haploid and immortalized F2 populations. J. Genetics. 89(4), 409–415 (2010).


    Google Scholar
     

  • 77.

    Li, W. L. et al. Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125, 357–366 (2002).

    CAS 

    Google Scholar
     

  • 78.

    Liu, J. et al. A 55 K SNP array based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor. Appl. Genet. 131, 2439–2450 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Luo, W. et al. Identification of quantitative trait loci controlling agronomic traits indicates breeding potential of Tibetan semiwild wheat (Triticum aestivum ssp. tibetanum). Crop Sci. 56, 2410–2420 (2016).

    CAS 

    Google Scholar
     

  • 80.

    Naruoka, Y. et al. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor. Appl. Genet. 123, 1043–1053 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Ren, Y. et al. Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Front Plant Sci. 8, 2096 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Sherman, J. D. et al. Genetic basis of agronomic differences between a modern and a historical spring wheat cultivar. Crop Sci. 54, 1–13 (2014).


    Google Scholar
     

  • 83.

    Su, J. Y. et al. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci. 176, 824–836 (2009).

    CAS 

    Google Scholar
     

  • 84.

    Su, J. Y. et al. Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant Soil 281, 25–36 (2006).

    CAS 

    Google Scholar
     

  • 85.

    Tang, Y. L. et al. Identification of QTLs for yield-related traits in the recombinant inbred line population derived from the cross between a synthetic hexaploid wheat-derived variety Chuanmai 42 and a Chinese elite variety Chuannong 16. Agric. Sci. China 10(11), 1665–1680 (2011).

    CAS 

    Google Scholar
     

  • 86.

    Wang, J. et al. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica 177, 277–292 (2011).


    Google Scholar
     

  • 87.

    Xu, T. et al. Characterization of a common wheat (Triticum aestivum L.) high-tillering dwarf mutant. Theor. Appl. Genet. 130, 483–494 (2016).

    PubMed 

    Google Scholar
     

  • 88.

    Xu, Y. et al. QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Mol. Breed. 37, 34 (2017).


    Google Scholar
     

  • 89.

    Zou, J. et al. QTLs associated with agronomic traits in the Attila × CDC Go spring wheat population evaluated under conventional management. PLoS ONE 12(2), e0171528 (2017).

    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source Article

    Next Post

    Sustained planetwide storms may have filled lakes, rivers on ancient Mars

    Thu Aug 20 , 2020
    New research from The University of Texas at Austin has used dry Martian lake beds to determine how much precipitation was present on the planet billions of years ago. Credit: Gaia Stucky de Quay A new study from The University of Texas at Austin is helping scientists piece together the […]

    You May Like