How memory effects, check dams, and channel geometry control erosion and deposition by debris flows

Christel Deskins

1. Iverson, R. M. The physics of debris flows. Rev. Geophys. 35(3), 245–296 (1997). ADS  Google Scholar  2. Blair, T. C. & McPherson, J. G. Processes and forms of alluvial fans. In Geomorphology of Desert Environments (eds Parsons, A. J. & Abrahams, A. D.) 413–467 (Springer, Dordrecht, 2009). Google Scholar  […]

  • 1.

    Iverson, R. M. The physics of debris flows. Rev. Geophys. 35(3), 245–296 (1997).

    ADS 

    Google Scholar
     

  • 2.

    Blair, T. C. & McPherson, J. G. Processes and forms of alluvial fans. In Geomorphology of Desert Environments (eds Parsons, A. J. & Abrahams, A. D.) 413–467 (Springer, Dordrecht, 2009).


    Google Scholar
     

  • 3.

    De Haas, T., Kleinhans, M. G., Carbonneau, P. E., Rubensdotter, L. & Hauber, E. Surface morphology of fans in the high-Arctic periglacial environment of Svalbard: controls and processes. Earth Sci. Rev. 146, 163–182 (2015).

    ADS 

    Google Scholar
     

  • 4.

    Dowling, C. A. & Santi, P. M. Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Nat. Hazards 71(1), 203–227 (2014).


    Google Scholar
     

  • 5.

    Stoffel, M., Mendlik, T., Schneuwly-Bollschweiler, M. & Gobiet, A. Possible impacts of climate change on debris-flow activity in the Swiss Alps. Clim. Change 122(1–2), 141–155 (2014).

    ADS 

    Google Scholar
     

  • 6.

    Stoffel, M., Tiranti, D. & Huggel, C. Climate change impacts on mass movements—case studies from the European Alps. Sci. Total Environ. 493, 1255–1266 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Turkington, T., Remaître, A., Ettema, J., Hussin, H. & Westen, C. Assessing debris flow activity in a changing climate. Clim. Change 137(1–2), 293–305 (2016).

    ADS 

    Google Scholar
     

  • 8.

    De Haas, T. et al. Avulsions and the spatio-temporal evolution of debris-flow fans. Earth Sci. Rev. 177, 53–75 (2018).

    ADS 

    Google Scholar
     

  • 9.

    Hungr, O., McDougall, S. & Bovis, M. Entrainment of material by debris flows. In Debris-flow hazards and related phenomena (eds Jakob, M. & Hungr, O.) 135–158 (Springer, Berlin, 2005).


    Google Scholar
     

  • 10.

    Navratil, O. et al. High-frequency monitoring of debris-flow propagation along the Réal Torrent, Southern French Prealps. Geomorphology 201, 157–171 (2013).

    ADS 

    Google Scholar
     

  • 11.

    Theule, J. I., Liébault, F., Loye, A., Laigle, D. & Jaboyedoff, M. Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France. Natural Hazards Earth Syst Sci 12, 731–749 (2012).

    ADS 

    Google Scholar
     

  • 12.

    Theule, J. I., Liébault, F., Laigle, D., Loye, A. & Jaboyedoff, M. Channel scour and fill by debris flows and bedload transport. Geomorphology 243, 92–105 (2015).


    Google Scholar
     

  • 13.

    De Haas, T. & Van Woerkom, T. Bed scour by debris flows: experimental investigation of effects of debris-flow composition. Earth Surf. Proc. Land. 41(13), 1951–1966 (2016).

    ADS 

    Google Scholar
     

  • 14.

    Pérez, F. L. Matrix granulometry of catastrophic debris flows (December 1999) in central coastal Venezuela. CATENA 45, 163–183 (2001).


    Google Scholar
     

  • 15.

    Rickenmann, D. Empirical relationships for debris flows. Nat. Hazards 19(1), 47–77 (1999).


    Google Scholar
     

  • 16.

    Iverson, R. M., Schilling, S. P. & Vallance, J. W. Objective delineation of lahar-inundation hazard zones. Geol. Soc. Am. Bull. 110(8), 972–984 (1998).

    ADS 

    Google Scholar
     

  • 17.

    Griswold, J. P., & Iverson, R. M. Mobility statistics and automated hazard mapping for debris flows and rock avalanches. US Geological Survey Open-File Report 2007–5276 (2008).

  • 18.

    Pudasaini, S. P. A general two-phase debris flow model. J. Geophys. Res. Earth Surf. 117, F03010 (2012).

    ADS 

    Google Scholar
     

  • 19.

    Iverson, R. M. & George, D. L. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. Proc. R. Soc. Math. Phys. Eng. Sci. 470(2170), 20130819 (2014).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 20.

    Schraml, K., Thomschitz, B., McArdell, B. W., Graf, C. & Kaitna, R. Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Nat. Hazards Earth Syst. Sci. 15(7), 1483 (2015).

    ADS 

    Google Scholar
     

  • 21.

    McDougall, S. & Hungr, O. Dynamic modelling of entrainment in rapid landslides. Can. Geotech. J. 42, 1437–1448 (2005).


    Google Scholar
     

  • 22.

    Medina, V., Hürlimann, M. & Bateman, A. Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5, 127–142 (2008).


    Google Scholar
     

  • 23.

    Frank, F., McArdell, B. W., Huggel, C., & Vieli, A. The importance of erosion for debris flow runout modelling from applications to the Swiss Alps. Nat. Hazards Earth Syst. Sci. Discuss. 3(4), 2379–2417 (2015).

  • 24.

    Iverson, R. M. & Ouyang, C. Entrainment of bed material by earth-surface mass flows: review and reformulation of depth-integrated theory. Rev. Geophys. 53(1), 27–58 (2015).

    ADS 

    Google Scholar
     

  • 25.

    Iverson, R. M. et al. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat. Geosci. 4(2), 116 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Lanzoni, S., Gregoretti, C. & Stancanelli, L. M. Coarse-grained debris flow dynamics on erodible beds. J. Geophys. Res. Earth Surf. 122(3), 592–614 (2017).

    ADS 

    Google Scholar
     

  • 27.

    Li, P., Hu, K. & Wang, X. Debris flow entrainment rates in non-uniform channels with convex and concave slopes. J. Hydraul. Res. 56, 1–12 (2017).


    Google Scholar
     

  • 28.

    Lu, P. Y., Yang, X. G., Xu, F. G., Hou, T. X. & Zhou, J. W. An analysis of the entrainment effect of dry debris avalanches on loose bed materials. SpringerPlus 5(1), 1621 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Schürch, P., Densmore, A. L., Rosser, N. J. & McArdell, B. W. Dynamic controls on erosion and deposition on debris-flow fans. Geology 39(9), 827–830 (2011).

    ADS 

    Google Scholar
     

  • 30.

    McCoy, S. W. et al. Sediment entrainment by debris flows: in situ measurements from the headwaters of a steep catchment. J. Geophys. Res. Earth Surf. 117, F03016 (2012).

    ADS 

    Google Scholar
     

  • 31.

    Berger, C., McArdell, B. W. & Schlunegger, F. Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. J. Geophys. Res. Earth Surf. 116, F01002 (2011).

    ADS 

    Google Scholar
     

  • 32.

    Dietrich, A. & Krautblatter, M. Deciphering controls for debris-flow erosion derived from a LiDAR-recorded extreme event and a calibrated numerical model (Roßbichelbach, Germany). Earth Surf. Proc. Land. 44(6), 1346–1361 (2019).

    ADS 

    Google Scholar
     

  • 33.

    Marchand, A. Les Torrents des alpes, in Revue des eaux et forêts, annales forestières, Paris, no. 10, 77–95 (1871).

  • 34.

    Lichtenhahn, C. Zwei Betonmauern: die Geschieber ückhaltesperre am Illgraben (Wallis). In Internationales Symposium Interpraevent: Villach, Austria, F.f.v. Hochwasserbekämpfung, 451–456 (1971).

  • 35.

    Bennett, G. L., Molnar, P., McArdell, B. W. & Burlando, P. A probabilistic sediment cascade model of sediment transfer in the Illgraben. Water Resour. Res. 50(2), 1225–1244 (2014).

    ADS 

    Google Scholar
     

  • 36.

    Hürlimann, M., Rickenmann, D. & Graf, C. Field and monitoring data of debris-flow events in the Swiss Alps. Can. Geotechn. J. 40, 161–175. https://doi.org/10.1139/t02-087 (2003).

    Article 

    Google Scholar
     

  • 37.

    McArdell, B. W., Bartelt, P. & Kowalski, J. Field observations of basal forces and fluid pore pressure in a debris flow. Geophys. Res. Lett. 34, L07406. https://doi.org/10.1029/2006GL029183 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Schlunegger, F. et al. Limits of sediment transfer in an alpine debris-flow catchment, Illgraben, Switzerland. Quatern. Sci. Rev. 28(11–12), 1097–1105 (2009).

    ADS 

    Google Scholar
     

  • 39.

    Jaeggi, M. N. R. & Pellandini, S. Torrent check dams as a control measure for debris flows. In Recent Developments on Debris Flows (eds Armanini, A. & Michiue, M.) 186–207 (Springer, Berlin, 1997).


    Google Scholar
     

  • 40.

    Piton, G. et al. Why do we build check dams in Alpine streams? An historical perspective from the French experience. Earth Surf. Proc. Land. 42(1), 91–108 (2017).

    ADS 

    Google Scholar
     

  • 41.

    Zeng, Q. L., Yue, Z. Q., Yang, Z. F. & Zhang, X. J. A case study of long-term field performance of check-dams in mitigation of soil erosion in Jiangjia stream, China. Environ. Geol. 58, 897–911 (2009).

    ADS 

    Google Scholar
     

  • 42.

    Chen, J., He, Y. & Wei, F. Debris flow erosion and deposition in Jiangjia Gully, Yunnan, China. Environ. Geol. 48, 771–777 (2005).

    ADS 

    Google Scholar
     

  • 43.

    Iverson, R. M. Elementary theory of bed-sediment entrainment by debris flows and avalanches. J. Geophys. Res. Earth Surf. 117, F03006 (2012).

    ADS 

    Google Scholar
     

  • 44.

    Fagents, S. A. & Baloga, S. M. Toward a model for the bulking and debulking of lahars. J. Geophys. Res. Solid Earth 111, B10201 (2006).

    ADS 

    Google Scholar
     

  • 45.

    Rickenmann, D., Weber, D., & Stepanov, B. Erosion by debris flows in field and laboratory experiments. In Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings of 5th International Conference, Padua, Italy, 883–894 (2003).

  • 46.

    Conway, S., Decaulne, A., Balme, M., Murray, J. & Towner, M. A new approach to estimating hazard posed by debris flows in the Westfjords of Iceland. Geomorphology 114, 556–572 (2010).

    ADS 

    Google Scholar
     

  • 47.

    Han, Z., Chen, G., Li, Y. & He, Y. Assessing entrainment of bed material in a debris-flow event: a theoretical approach incorporating Monte Carlo method. Earth Surf. Proc. Land. 40, 1877–1890 (2015).

    ADS 

    Google Scholar
     

  • 48.

    Stock, J. & Dietrich, W. E. Valley incision by debris flows: evidence of a topographic signature. Water Resour. Res. 39(4), 1089 (2003).

    ADS 

    Google Scholar
     

  • 49.

    Yohannes, B., Hsu, L., Dietrich, W. E. & Hill, K. M. Boundary stresses due to impacts from dry granular flows. J. Geophys. Res. Earth Surf. 117, F02027 (2012).

    ADS 

    Google Scholar
     

  • 50.

    Hsu, L., Dietrich, W. E. & Sklar, L. S. Experimental study of bedrock erosion by granular flows. J. Geophys. Res. Earth Surf. 113, F02001 (2008).

    ADS 

    Google Scholar
     

  • 51.

    Major, J. J. Depositional processes in large-scale debris-flow experiments. J. Geol. 105(3), 345–366 (1997).

    ADS 

    Google Scholar
     

  • 52.

    Carbonneau, P. E. & Dietrich, J. T. Cost-effective non-metric photogrammetry from consumer-grade sUAS: implications for direct georeferencing of structure from motion photogrammetry. Earth Surf. Proc. Land. 42(3), 473–486 (2017).

    ADS 

    Google Scholar
     

  • Source Article

    Next Post

    Studying viral outbreaks in single cells could reveal new ways to defeat them

    Credit: CC0 Public Domain Many viruses, including HIV and influenza A, mutate so quickly that identifying effective vaccines or treatments is like trying to hit a moving target. A better understanding of viral propagation and evolution in single cells could help. Today, scientists report a new technique that can not […]